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Abstract (ENG)
We show that, within the class of partially commutative groups, the conditions of

being Howson, being fully residually free, and being a free product of free-abelian

groups, are equivalent.
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Some characterizations of Howson PC-groups

In [10], the authors study the family of finitely generated partially commutative groups for which the fixed
points subgroup of every endomorphism is finitely generated. Concretely, they characterize this family as
those groups consisting in (finite) free products of finitely generated free-abelian groups.

In this note we provide an elementary proof for two extra characterizations of this same family, namely:
being Howson, and being a limit group. Moreover, we observe that, for some of the properties, no restriction
in the cardinal of the generating set is needed, and the result holds in full generality (i.e. for every — possibly
infinitely generated — partially commutative group).

1. Preliminaries

We call partially commutative groups (PC-groups, for short) the groups that admit a presentation in which
all the relations are commutators between generators, i.e. a presentation of the form 〈X |R 〉, where R is
a subset of [X , X ] (the set of commutators between elements in X ).

We can represent this situation in a very natural way through the (simple) graph Γ = (X , E ) having
as vertices the generators in X , and two vertices x , y ∈ X being adjacent if and only if its commutator
[x , y ] belongs to R; then we say that the PC-group is presented by the graph Γ, and we denote it by 〈 Γ 〉.
Recall that a simple graph is undirected, loopless, and without multiple edges; so, Γ is nothing more than
a symmetric and irreflexive binary relation in X .

A subgraph of a graph Γ = (X , E ) is said to be full if it has exactly the edges that appear in Γ over
the same vertex set, say Y ⊆ X . Then, it is called the full subgraph of Γ spanned by Y , and we denote it
by Γ[Y ]. If Γ has a full subgraph isomorphic to a certain graph Λ, we will abuse the terminology and say
that Λ is (or appears as) a full subgraph of Γ; we denote this situation by Λ 6 Γ. When none of the graphs
belonging to a certain family F appear as a full subgraph of Γ, we say that Γ is F-free. In particular, a
graph Γ is Λ-free if it does not have any full subgraph isomorphic to Λ.

It is clear that every graph Γ presents exactly one PC-group; that is, we have a surjective map Γ 7→ 〈 Γ 〉
between (isomorphic classes of) simple graphs and (isomorphic classes of) PC-groups. A key result proved
by Droms in [5] states that this map is, in fact, bijective. Therefore, we have an absolutely transparent
geometric characterization of isomorphic classes of PC-groups: we can identify them with simple graphs.

This way, the PC-group corresponding to a graph with no edges is a free group, and the one corre-
sponding to a complete graph is a free-abelian group (in both cases, with rank equal to the number of
vertices). So, we can think of PC-groups as a generalization of these two extreme cases including all the
intermediate commutativity situations between them.

Similarly, disjoint unions and joins of graphs (i.e. disjoint unions with all possible edges between distinct
constituents added) correspond to free products and weak direct products of PC-groups, respectively. So,
for example, the finitely generated free-abelian times free group Zm × Fn is presented by the join of a
complete graph of order m and an edgeless graph of order n.

All these facts are direct from definitions, and make the equivalence between the conditions in the
following lemma almost immediate as well.

Lemma 1.1. Let Γ be an arbitrary simple graph, and 〈 Γ 〉 the corresponding PC-group. Then, the following
conditions are equivalent:

(i) the path on three vertices P3 is not a full subgraph of Γ (i.e. Γ is P3-free),

(ii) the reflexive closure of Γ is a transitive binary relation,
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(iii) Γ is a disjoint union of complete graphs,

(iv) 〈 Γ 〉 is a free product of free-abelian groups.

The next lemma, for which we provide an elementary proof, is also well known. We will use it in the
proof of Theorem 2.1.

Lemma 1.2. Let Γ be an arbitrary simple graph, and Y a subset of vertices of Γ. Then, the subgroup of
〈 Γ 〉 generated by Y is isomorphic to the PC-group presented by Γ[Y ].

Proof. Let X be the set of vertices of Γ (then Y ⊆ X ), and consider the following two homomorphisms:

〈 Γ[Y ] 〉 α−→ 〈 Γ 〉
y 7−→ y

, 〈 Γ 〉 ρ−→ 〈 Γ[Y ] 〉
Y 3 y 7−→ y

X \ Y 3 x 7−→ 1

.

It is clear that both α and ρ are well defined homomorphisms (they obviously respect relations). More-
over, note that the composition αρ (α followed by ρ) is the identity map on 〈 Γ[Y ] 〉. Therefore, α is a
monomorphism, and thus 〈 Γ[Y ] 〉 is isomorphic to its image under α, which is exactly the subgroup of 〈 Γ 〉
generated by Y , as we wanted to prove.

A group is said to satisfy the Howson property (or to be Howson, for short) if the intersection of any
two finitely generated subgroups is again finitely generated. It is well known that free and free-abelian
groups are Howson (see, for example, [1] and [6] respectively).

However, not every PC-group is Howson: for example, a free-abelian times free group (studied in [4])
turns out to be Howson if and only if it does not have Z× F2 as a subgroup. So, it is a natural question
to ask for a characterization of Howson PC-groups, and we will see in Theorem 2.1 that the very same
condition (not containing Z× F2 as a subgroup) works for a general PC-group.

For limit groups there are lots of different equivalent definitions. We shall use the one using fully
residual freeness (see [12] for details): a group G is fully residually free if for every finite subset S ⊆ G
such that 1 /∈ S , there exist an homomorphism ϕ from G to a free group such that 1 /∈ ϕ(S). Then, a
limit group is a finitely generated fully residually free group. From this definition, it is not difficult to see
that both free and free-abelian groups are fully residually free, and that subgroups and free products of
fully residually free groups are again fully residually free.

2. Characterizations

As proved by Rodaro, Silva, and Sykiotis [10, Theorem 3.1], if we restrict to finitely generated PC-groups,
Lemma 1.1 describes exactly the family of those having finitely generated fixed point subgroup for every
endomorphism (or equivalently, those having finitely generated periodic point subgroup for every endomor-
phism).

In the following theorem, we provide two extra characterizations for the PC-groups described in
Lemma 1.1 (including the infinitely generated case). For completeness in the description, we summa-
rize them in a single statement together with the conditions discussed above.

35Reports@SCM 1 (2014), 33–38; DOI:10.2436/20.2002.02.3.



Some characterizations of Howson PC-groups

Theorem 2.1. Let Γ be an arbitrary (possibly infinite) simple graph, and 〈 Γ 〉 the PC-group presented by
Γ. Then, the following conditions are equivalent:

(a) 〈 Γ 〉 is fully residually free,

(b) 〈 Γ 〉 is Howson,

(c) 〈 Γ 〉 does not contain Z× F2 as a subgroup,

(d) 〈 Γ 〉 is a free product of free-abelian groups.

Moreover, if Γ is finite, then the following additional conditions are also equivalent:

(e) For every ϕ ∈ End 〈 Γ 〉, the subgroup Fixϕ = {g ∈ 〈 Γ 〉 : ϕ(g) = g} of fixed points of ϕ is finitely
generated.

(f) For every ϕ ∈ End 〈 Γ 〉, the subgroup Perϕ = {g ∈ 〈 Γ 〉 : ∃n ≥ 1 ϕn(g) = g} of periodic points of
ϕ is finitely generated.

Proof. (a) ⇒ (b). Dahmani obtained this result for limit groups (i.e. assuming 〈 Γ 〉 finitely generated)
as a consequence of them being hyperbolic relative to their maximal abelian non-cyclic subgroups (see [3,
Corollary 0.4]). We note that the finitely generated condition is superfluous for this implication since the
Howson property involves only finitely generated subgroups, and every subgroup of a fully residually free
group is again fully residually free.

(b) ⇒ (c). It is enough to prove that the group Z × F2 does not satisfy the Howson property. The
following argument is described as a solution to exercise 23.8(3) in [1] (see also [4]). Indeed, if we write
Z× F2 = 〈 t |− 〉 × 〈 a, b |− 〉, then the subgroups

H = 〈a, b〉 = F2 6 Z× F2, and

K = 〈ta, b〉 = {w(ta, b) | w ∈ F2} = {t |w |aw(a, b) | w ∈ F2} 6 Z× F2

are both finitely generated, but its intersection

H ∩ K = {t0w(a, b) | w ∈ F2, |w |a = 0} = 〈〈b〉〉F2 = 〈a−kbak , k ∈ Z〉

is infinitely generated, as you can see immediately from its Stallings graph
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(see [11] and [8]), or using this alternative argument: suppose H ∩K is finitely generated, then there exists
m ∈ N such that am+1ba−(m+1) ∈ 〈a−kbak , k ∈ [−m, m]〉, and thus am+1 equals the reduced form of
some prefix of w(amba−m, ... , b, ... , a−mbam), for some word w . However, the sum of exponents of a in
any such prefix must be in [−m, m], which is a contradiction.

Note that both H and K are free groups of rank two whose intersection is infinitely generated. This fact,
far from violating the Howson property of free groups, means that both H and K are not simultaneously
contained in any free subgroup of Z× F2.
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(c) ⇒ (d). From Lemma 1.2, if 〈 Γ 〉 does not contain the group Z×F2 (which is presented by P3) as
a subgroup, then P3 is not a full subgraph of Γ. Equivalently, 〈 Γ 〉 is a free product of free-abelian groups
(see Lemma 1.1).

(d) ⇒ (a). This is again clear, since free-abelian groups are fully residually free, and free products of
fully residually free groups are again fully residually free. Note here, that no cardinal restriction is needed;
neither for the rank of the free-abelian groups, nor for the number of factors in the free product, since the
definition of fully residually freeness involves only finite families.

Finally, for the equivalence between (d), (e) and (f ) under the finite generation hypothesis, see [10,
Theorem 3.1].

Observe that an immediate corollary of Lemma 1.2 is that the PC-group presented by any full subgraph
Λ 6 Γ is itself a subgroup of the PC-group presented by Γ, i.e. for every pair of graphs Γ, Λ,

Λ 6 Γ ⇒ 〈Λ 〉 6 〈 Γ 〉 .

This property provides a distinguished family of subgroups (which we will call visible) of any given PC-
group. More precisely, we will say that a PC-group 〈Λ 〉 is a visible subgroup of a PC-group 〈 Γ 〉 — or
that 〈Λ 〉 is visible in 〈 Γ 〉 — if Λ appears as a full subgraph of Γ.

Of course, visible subgroups are PC-groups as well, but not every partially commutative subgroup of a
PC-group is visible (for example, F3 is obviously not visible in F2).

Note that although “visibility” is a relative property (a PC-group can be visible in a certain group, and
not in another one), there exist PC-groups which are visible in every PC-group in which they appear as
a subgroup; we will call them explicit. That is, a given PC-group 〈Λ 〉 (or the graph Λ presenting it) is
explicit if for every graph Γ,

Λ 6 Γ ⇔ 〈Λ 〉 6 〈 Γ 〉 .

For example, it is straightforward to see that the only explicit edgeless graphs are the ones with zero,
one, and two vertices: the first two cases are obvious, and for the third one, note that if F2 6 G then G
can not be abelian. Finally, for n ≥ 3, it is sufficient to note (again) that Fn is not a visible subgroup of F2.

At the opposite extreme, a well-known result [9, Lemma 18] states that the maximum rank of a free-
abelian subgroup of a f.g. PC-group 〈 Γ 〉 coincides with the maximum size of a complete subgraph in Γ.
An immediate corollary is that every (finite) complete graph is explicit.

In the last years, embedability between PC-groups has been a matter of growing interest and research
(see [7], [9] and [2]). In particular, new examples of explicit graphs are known, such as the square C4

(proved by Kambites in [7]), or the path on four vertices P4 (proved by Kim and Koberda in [9]).

To end with, we just remark that our characterization theorem (Theorem 2.1) immediately provides a
new member of this family.

Corollary 2.2. The path on three vertices P3 is explicit.
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